Welcome to Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion!

学院主页      | 加入收藏 
首页 > 最新成果 > 正文

最新成果

论文快讯 // Network of Soil Fungi and the Microfauna Community under Diverse Anthropic Disturbances under Chrysopogon zizanioides Planting in the Reservoir

发布日期:2024-01-30  文章来源:本网站   点击数:

Xiaoyue Lin, Xuemei Han *, Jiading Yang, Fengyu Liu, Yuying Li and Zhaojin Chen. Network of Soil Fungi and the Microfauna Community under Diverse Anthropic Disturbances under Chrysopogon zizanioides Planting in the Reservoir. Plants 2024, 13, 393. https://doi.org/ 10.3390/plants13030393


Abstract: The reservoir coastal zone is the transitional zone between the terrestrial ecosystem and the aquatic ecosystem. Soil is an essential part of the terrestrial ecosystem and vital for life on Earth. To understand the composition and diversity of the soil eukaryotic microbial community under the background of artificial planting of Chrysopogon zizanioides in various habitats after reservoir construction, including the original habitat (OH), the hydro-fluctuation belt (HB), and the road slope (RS), and to analyze the interaction between the main groups of eukaryotic microorganisms, this study conducted 18S rDNA amplification high-throughput sequencing of the soil eukaryotic microbial community. The study found that the dominant phylum of eukaryotic microorganisms in the three habitats was consistent, but there were significant differences in the community and diversity of eukaryotic microorganisms in the three habitats. The differences in fungal communities between sample sites were greater than those of soil microfauna. Correlation analysis showed that nitrogen, phosphorus, and organic matter were significantly correlated with eukaryotic microbial diversity, with alkaline-hydrolyzed nitrogen and total phosphorus significantly correlated with fungal communities and pH and water content correlated with soil microfauna. Co-occurrence network analysis found that the interactions between fungi and the correlation between fungi and soil microfauna dominated the eukaryotic microbial community, and the interactions between eukaryotic microbes in different habitats were dominated by positive correlations. After the construction of the reservoir, the newly formed hydro-fluctuation belt reduced the types of interrelationships between fungi and microfauna compared to the original habitat. The road slope provided protection of the supporting project for the reservoir construction, although there was also planted vegetation. Eukaryotic microbes declined significantly due to the damage to and loss of the organic layer, and the decline in microfauna was the most significant, resulting in a simple structure of the soil food web, which affects the function and stability of the soil ecosystem.


Keywords: Danjiangkou reservoir; soil eukaryotic microbes; 18S rDNA; hydro-fluctuation belt; co-occurrence network






  • 附件【plants-13-00393.pdf】已下载