第三章 练习题

一、判断题

1. 初等变换不改变矩阵的秩.	()
$3. R(A+B) \le R(A) + R(B)$	()
2. 秩为 r 的矩阵 A 中, A 的 r 阶子式全不为零.	()
4. 如果线性方程组 $A_{n\times n}x = b$ 无解或有两个不同的解,则它的系数行列式组	必为零.()
5. 若 $ A $ ≠ 0 ,则齐次线性方程组 Ax = 0 只有零解.	()
6. 若 $A \sim B$,则 $R(A) = R(B)$.	()
7. 若矩阵 A 中有一个 r 阶子式全不为零,则矩阵 A 的秩为 r .	()
8. 若 $m < n$,则 $A_{m \times n} x = 0$ 有非零解.	()
9. 若 A 为 n 阶可逆矩阵,且 AX=0,则 X=0.	()
二、选择题	
$10.$ 设 A 是 $m \times n$ 矩阵,且秩 $R(A) = m < n$,则()	
A. A 的任意一个 m 阶子式都不等于零; B. A 的任意一个 $m-1$ 阶子式都不等	等于零:
C. 齐次线性方程组 $Ax = 0$ 只有零解; D. 非齐次线性方程组 $Ax = b$ 必有	
11. 设 A 是 n 阶方阵, A 经过有限次矩阵的初等行变换后得到矩阵 B ,则	
A .存在矩阵 P,使得 PA=B; B .存在可逆矩阵 Q,使得 AQ=B;	, , ,
C.存在可逆矩阵 P, 有 PA=B; D.存在可逆矩阵 P 及 Q, 有 PAQ=B.	
12. 行列式 $ A =0$ 时,线性方程组 $AX=0$ ()	
A.只有零解; B.只有非零解; C.无解; <i>D</i> .有非零解.	
13. 设 A 是 n 阶方阵, A 经过有限次矩阵的初等变换后得到矩阵 B ,则有	į ()
A. $ A = B $; B. $ A \neq B $; C. $R(A) = R(B)$; D. $R(A) \neq R(B)$.	
14. 设 <i>n</i> 阶方阵不可逆,则必有()	
A. $R(A) < n$; B. $R(A) = n - 1$; C. $A = 0$; D. 方程组 $AX = 0$ 只有零解	<u>!</u>
15 .设 n 元线性方程组 $Ax = b$,以下说法错误的是().	
A. $Ax = b$ 有解的充分必要条件是 $ A \neq 0$;	
B. $Ax = b$ 无解的充分必要条件是 $R(A) < R(A,b)$;	
C. $Ax = b$ 有唯一解的充分必要条件是 $R(A) = R(A,b) = n$;	
D. $Ax = b$ 有无穷多解的充分必要条件是 $R(A) = R(A,b) < n$	
16. 设矩阵 A 的秩为 r ,则 A 中 ()	
A. 所有 $r-1$ 阶子式都不为零; B . 所有 $r-1$ 阶子式全为零;	
<u> </u>	

C.至少有 1 个 r 阶子式不为零; D. 所有 r 阶子式都不为零.

17.设
$$A = \begin{pmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{pmatrix}$$
, 若 $R(A) = 2$, 则 k 的取值情况为().

$$A. k = -2;$$
 $B. k = 1;$ $C. k \neq 1$ 且 $k \neq -2;$ $D.$ 无法确定.

三、填空题

18. 已知
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 $A\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$, 则 $A =$

- **19**.n个方程n个未知数构成的线性方程组,如果它的系数行列式D≠0,那么它一定有_____解.
- 20. 线性方程组 Ax = b 有解的充分必要条件是
- 21. 三元齐次线性方程组 AX = 0 的基础解系 63 个向量,则 $R(A) = _____.$

22.设
$$A$$
 是 3×4矩阵,秩 $R(A) = 2$, $B = \begin{bmatrix} 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$,则秩 $R(BA) = ______$

四、计算题

23. 问
$$\lambda$$
 取何值时,非齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1, \\ x_1 + \lambda x_2 + x_3 = \lambda, \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

- (1) 有唯一解; (2) 无解; (3) 有无穷多解, 并求其通解.
- (答案: (1) 当 $k \neq 1$ 且 $k \neq -2$ 时,R(A) = R(B) = 3,方程组有唯一解;
 - (2) 当k = -2 时,R(A) = 2, R(B) = 3,方程组无解;
 - (3) 当k=1时,R(A)=R(B)=1,方程组有无数多解,这时方程组的通解

是
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c_1 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
,其中 c_1, c_2 为任意实数.)

24. 问
$$\lambda$$
 取何值时,非齐次线性方程组
$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 = 0, \\ x_1 + (1+\lambda)x_2 + x_3 = 3, \\ x_1 + x_2 + (1+\lambda)x_3 = \lambda. \end{cases}$$

- (1) 有唯一解; (2) 无解; (3) 有无穷多解, 并求其通解.
- (答案: (1) 当 $k \neq 0$ 且 $k \neq -3$ 时,R(A) = R(B) = 3,方程组有唯一解;
 - (2) 当k = 0时,R(A) = 1, R(B) = 2,方程组无解;
 - (3) 当k = -3时,R(A) = R(B) = 2,方程组有无数多解,这时方程组的通解

是
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}$$
, 其中 c 为任意实数.)

- 25. 利用矩阵的初等行变换,求矩阵 $A = \begin{pmatrix} 3 & 2 & 1 \\ 3 & 1 & 5 \\ 3 & 2 & 3 \end{pmatrix}$ 的逆矩阵。
- 26. 求下列矩阵的秩,并求一个最高阶非零子式。

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 & 2 \\ 1 & -1 & 2 & -1 \\ 1 & 3 & -4 & 4 \end{pmatrix}$$

27. 设

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}, \quad AX = 2X + A, \quad RX = X$$

28. 求解齐次线性方程组 $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0, \\ 2x_1 + x_2 - 2x_3 - 2x_4 = 0, \\ x_1 - x_2 - 4x_3 - 3x_4 = 0. \end{cases}$

(答案:
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ -2 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 5/3 \\ -4/3 \\ 0 \\ 1 \end{bmatrix}, 其中 c_1, c_2 为任意实数.)$$

29. 求解齐次线性方程组 $\begin{cases} x_1 - 5x_2 + 2x_3 - 3x_4 = 0, \\ -3x_1 + x_2 - 4x_3 + 2x_4 = 0, \\ -x_1 - 9x_2 - 4x_4 = 0. \end{cases}$

(答案:
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = c_1 \begin{bmatrix} -\frac{9}{7} \\ \frac{1}{7} \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix}, 其中 c_1, c_2 为任意实数.)$$

30. 解线性方程组: $\begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} X = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}. \quad (答案: X = \begin{vmatrix} 4/3 \\ /3 \\ -11/3 \\ -2 \end{vmatrix}.)$